377 research outputs found

    Evaluating predictive pharmacogenetic signatures of adverse events in colorectal cancer patients treated with fluoropyrimidines

    Get PDF
    The potential clinical utility of genetic markers associated with response to fluoropyrimidine treatment in colorectal cancer patients remains controversial despite extensive study. Our aim was to test the clinical validity of both novel and previously identified markers of adverse events in a broad clinical setting. We have conducted an observational pharmacogenetic study of early adverse events in a cohort study of 254 colorectal cancer patients treated with 5-fluorouracil or capecitabine. Sixteen variants of nine key folate (pharmacodynamic) and drug metabolising (pharmacokinetic) enzymes have been analysed as individual markers and/or signatures of markers. We found a significant association between TYMP S471L (rs11479) and early dose modifications and/or severe adverse events (adjusted OR = 2.02 [1.03; 4.00], p = 0.042, adjusted OR = 2.70 [1.23; 5.92], p = 0.01 respectively). There was also a significant association between these phenotypes and a signature of DPYD mutations (Adjusted OR = 3.96 [1.17; 13.33], p = 0.03, adjusted OR = 6.76 [1.99; 22.96], p = 0.002 respectively). We did not identify any significant associations between the individual candidate pharmacodynamic markers and toxicity. If a predictive test for early adverse events analysed the TYMP and DPYD variants as a signature, the sensitivity would be 45.5 %, with a positive predictive value of just 33.9 % and thus poor clinical validity. Most studies to date have been under-powered to consider multiple pharmacokinetic and pharmacodynamic variants simultaneously but this and similar individualised data sets could be pooled in meta-analyses to resolve uncertainties about the potential clinical utility of these markers

    Genetics of human neural tube defects

    Get PDF
    Neural tube defects (NTDs) are common, severe congenital malformations whose causation involves multiple genes and environmental factors. Although more than 200 genes are known to cause NTDs in mice, there has been rather limited progress in delineating the molecular basis underlying most human NTDs. Numerous genetic studies have been carried out to investigate candidate genes in cohorts of patients, with particular reference to those that participate in folate one-carbon metabolism. Although the homocysteine remethylation gene MTHFR has emerged as a risk factor in some human populations, few other consistent findings have resulted from this approach. Similarly, attention focused on the human homologues of mouse NTD genes has contributed only limited positive findings to date, although an emerging association between genes of the non-canonical Wnt (planar cell polarity) pathway and NTDs provides candidates for future studies. Priorities for the next phase of this research include: (i) larger studies that are sufficiently powered to detect significant associations with relatively minor risk factors; (ii) analysis of multiple candidate genes in groups of well-genotyped individuals to detect possible gene–gene interactions; (iii) use of high throughput genomic technology to evaluate the role of copy number variants and to detect ‘private’ and regulatory mutations, neither of which have been studied to date; (iv) detailed analysis of patient samples stratified by phenotype to enable, for example, hypothesis-driven testing of candidates genes in groups of NTDs with specific defects of folate metabolism, or in groups of fetuses with well-defined phenotypes such as craniorachischisis

    Association of Methylentetraydrofolate Reductase (MTHFR) 677 C > T gene polymorphism and homocysteine levels in psoriasis vulgaris patients from Malaysia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The methylenetetrahydrofolate reductase (MTHFR) enzyme catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and methyl donors. The methyl donors are required for the conversion of homocysteine to methionine. Mutation of MTHFR 677 C > T disrupts its thermostability therefore leads to defective enzyme activities and dysregulation of homocysteine levels.</p> <p>Methods</p> <p>This case-control study (n = 367) was conducted to investigate the correlation of the MTHFR gene polymorphism [NM_005957] and psoriasis vulgaris amongst the Malaysian population. Overnight fasting blood samples were collected from a subgroup of consented psoriasis vulgaris patients and matched controls (n = 84) for the quantification of homocysteine, vitamin B<sub>12 </sub>and folic acid levels.</p> <p>Results</p> <p>There was no significant increase of the MTHFR 677 C > T mutation in patients with psoriasis vulgaris compared with controls (<it>χ</it><sup>2 </sup>= 0.733, p = 0.392). No significant association between homocysteine levels and MTHFR gene polymorphism in cases and controls were observed (F = 0.91, df = 3, 80, p = 0.44). However, homocysteine levels in cases were negatively correlated with vitamin B<sub>12 </sub>(r = -0.173) and folic acid (r = -0.345) levels. Vitamin B<sub>12 </sub>and folic acid levels in cases were also negatively correlated (r = -0.164).</p> <p>Conclusions</p> <p>Our results indicate that there was no significant association between the MTHFR gene polymorphism and psoriasis vulgaris in the Malaysian population. There was no significant increase of the plasma homocysteine level in the psoriasis patients compared to the controls.</p

    Antisense inhibition of methylenetetrahydrofolate reductase reduces survival of methionine-dependent tumour lines

    Get PDF
    Transformed cells have been documented to be methionine-dependent, suggesting that inhibition of methionine synthesis might be useful for cancer therapy. Methylenetetrahydrofolate reductase synthesises 5-methyltetrahydrofolate, the methyl donor utilised in methionine synthesis from homocysteine by vitamin B12-dependent methionine synthase. We hypothesised that methylenetetrahydrofolate reductase inhibition would affect cell viability through decreased methionine synthesis. Using medium lacking methionine, but containing homocysteine and vitamin B12 (M-H+), we found that nontransformed human fibroblasts could maintain growth. In contrast, four transformed cell lines (one colon carcinoma, two neuroblastoma and one breast carcinoma) increased proliferation only slightly in the M-H+ medium. To downregulate methylenetetrahydrofolate reductase expression, two phosphorothioate antisense oligonucleotides, EX5 and 677T, were used to target methylenetetrahydrofolate reductase in the colon carcinoma line SW620; 400 nM of each antisense oligonucleotide decreased cell survival by approximately 80% (P<0.01) and 70% (P<0.0001), respectively, compared to cell survival after the respective control mismatched oligonucleotide. Western blotting and enzyme assays confirmed that methylenetetrahydrofolate reductase expression was decreased. Two neuroblastoma and two breast carcinoma lines also demonstrated decreased survival following EX5 treatment whereas nontransformed human fibroblasts were not affected. This study suggests that methylenetetrahydrofolate reductase may be required for tumour cell survival and that methylenetetrahydrofolate reductase inhibition should be considered for anti-tumour therapy

    Association of homocysteine and methylene tetrahydrofolate reductase (MTHFR C677T) gene polymorphism with coronary artery disease (CAD) in the population of North India

    Get PDF
    The implications of the methylene tetrahydrofolate reductase (MTHFR) gene and the level of homocysteine in the pathogenesis of coronary artery disease (CAD) have been extensively studied in various ethnic groups. Our aim was to discover the association of MTHFR (C677T) polymorphism and homocysteine level with CAD in north Indian subjects. The study group consisted of 329 angiographically proven CAD patients, and 331 age and sex matched healthy individuals as controls. MTHFR (C677T) gene polymorphism was detected based on the polymerase chain reaction and restriction digestion with HinfI. Total homocysteine plasma concentration was measured using immunoassay. T allele frequency was found to be significantly higher in patients than in the control group. We found significantly elevated levels of mean homocysteine in the patient group when compared to the control group (p = 0.00). Traditional risk factors such as diabetes, hypertension, smoking habits, a positive family history and lipid profiles (triglyceride, total cholesterol, HDL-cholesterol, LDL-cholesterol, VLDL-cholesterol), were found significantly associated through univariate analysis. Furthermore, multivariable logistics regression analysis revealed that CAD is significantly and variably associated with diabetes, hypertension, smoking, triglycerides and HDL-cholesterol. Our findings showed that MTHFR C677T polymorphism and homocysteine levels were associated with coronary artery disease in the selected population

    An analysis of Methylenetetrahydrofolate reductase and Glutathione S-transferase omega-1 genes as modifiers of the cerebral response to ischemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral ischemia involves a series of reactions which ultimately influence the final volume of a brain infarction. We hypothesize that polymorphisms in genes encoding proteins involved in these reactions could act as modifiers of the cerebral response to ischemia and impact the resultant stroke volume. The final volume of a cerebral infarct is important as it correlates with the morbidity and mortality associated with non-lacunar ischemic strokes.</p> <p>Methods</p> <p>The proteins encoded by the methylenetetrahydrofolate reductase (<it>MTHFR</it>) and glutathione S-transferase omega-1 (<it>GSTO-1</it>) genes are, through oxidative mechanisms, key participants in the cerebral response to ischemia. On the basis of these biological activities, they were selected as candidate genes for further investigation. We analyzed the C677T polymorphism in the <it>MTHFR </it>gene and the C419A polymorphism in the <it>GSTO-1 </it>gene in 128 patients with non-lacunar ischemic strokes.</p> <p>Results</p> <p>We found no significant association of either the <it>MTHFR </it>(p = 0.72) or <it>GSTO-1 </it>(p = 0.58) polymorphisms with cerebral infarct volume.</p> <p>Conclusion</p> <p>Our study shows no major gene effect of either the <it>MTHFR </it>or <it>GSTO-1 </it>genes as a modifier of ischemic stroke volume. However, given the relatively small sample size, a minor gene effect is not excluded by this investigation.</p

    Polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and susceptibility to pediatric acute lymphoblastic leukemia in a German study population

    Get PDF
    BACKGROUND: Methylenetetrahydrofolate reductase (MTHFR) has a major impact on the regulation of the folic acid pathway due to conversion of 5,10-methylenetetrahydrofolate (methylene-THF) to 5-methyl-THF. Two common polymorphisms (677C>T and 1298A>C) in the gene coding for MTHFR have been shown to reduce MTHFR enzyme activity and were associated with the susceptibility to different disorders, including vascular disease, neural tube defects and lymphoid malignancies. Studies on the role of these polymorphisms in the susceptibility to acute lymphoblastic leukemia (ALL) led to discrepant results. METHODS: We retrospectively evaluated the association of the MTHFR 677C>T and 1298A>C polymorphisms with pediatric ALL by genotyping a study sample of 443 ALL patients consecutively enrolled onto the German multicenter trial ALL-BFM 2000 and 379 healthy controls. We calculated odds ratios of MTHFR genotypes based on the MTHFR 677C>T and 1298A>C polymorphisms to examine if one or both of these polymorphisms are associated with pediatric ALL. RESULTS: No significant associations between specific MTHFR variants or combinations of variants and risk of ALL were observed neither in the total patient group nor in analyses stratified by gender, age at diagnosis, DNA index, immunophenotype, or TEL/AML1 rearrangement. CONCLUSION: Our findings suggest that the MTHFR 677C>T and 1298A>C gene variants do not have a major influence on the susceptibility to pediatric ALL in the German population

    Genes influencing coagulation and the risk of aneurysmal subarachnoid hemorrhage, and subsequent complications of secondary cerebral ischemia and rebleeding

    Get PDF
    We investigated whether genes influencing coagulation are associated with the occurrence of aneurysmal subarachnoid hemorrhage (SAH) and with secondary cerebral ischemia and rebleeding in patients with aneurysmal SAH. Genotyping for factor V Leiden (G1691A), prothrombin G20210A, methylenetetetrahydrofolate reductase (MTHFR) C677T, factor XIII subunit A Val34Leu, Tyr204Phe and Pro564Leu, and factor XIII subunit B His95Arg was performed in 208 patients with aneurysmal SAH and in 925 controls. Secondary cerebral ischemia occurred in 49 (24%) patients and rebleeding in 28 (14%) during their clinical course of 3 months after the aneurysmal SAH. The risk of aneurysmal SAH was assessed as odds ratio (OR) with 95% confidence interval (95% CI). The risk of secondary cerebral ischemia and rebleeding was assessed as hazard ratio (HR) with 95% CI using Cox regression. Carriers of the subunit B His95Arg factor XIII polymorphism had an increased risk of aneurysmal SAH with 23% of the patients homozygous or heterozygous for the variant allele compared to 17% of control subjects (OR 1.5, 95% CI 1.0-2.2). For the remaining genetic variants no effect on the risk of aneurysmal SAH could be demonstrated. A clear relation with the risk of secondary cerebral ischemia and of rebleeding could not be established for any of the genetic variants. We found that aneurysmal SAH patients are more often carriers of the subunit B His95Arg factor XIII polymorphism compared to controls. This suggests that carriers of the subunit B His95Arg factor XIII polymorphism have an increased risk of aneurysmal SAH. Larger studies should confirm our results. As aneurysmal SAH patients who died soon after admission could not be included in the present study, our results only apply to a population of patients who survived the initial hours after the hemorrhage. For the other studied genetic factors involved in coagulation, no association with the occurrence of aneurysmal SAH or with the occurrence of secondary cerebral ischemia or rebleeding after aneurysmal SAH could be demonstrated

    Influence of folate status on genomic DNA methylation in colonic mucosa of subjects without colorectal adenoma or cancer

    Get PDF
    DNA hypomethylation may increase the risk of colorectal cancer. The main aim of this study was to assess the influence of folate status (serum and erythrocyte folate and plasma homocysteine concentrations) on DNA methylation. Methylenetetrahydrofolate reductase (MTHFR 677C → T and 1298A → C), methionine synthase (MS 2756A → G) and cystathionine synthase (CBS 844ins68) polymorphisms were measured to account for potential confounding effects on folate status and DNA methylation. A total of 68 subjects (33 men and 35 women, 36–78 years) free from colorectal polyps or cancer were recruited in a cross-sectional study. Tissue biopsies were obtained at colonoscopy for the determination of DNA methylation in colonic mucosa using an in vitro radiolabelled methyl acceptance assay. Serum and erythrocyte folate were inversely correlated with plasma homocysteine (r=−0.573, P<0.001 and r=−0.307, P=0.01 respectively) and DNA hypomethylation in colonic mucosa (r=−0.311, P=0.01 and r=−0.356, P=0.03). After adjusting for gender, age, body mass index, smoking and genotype, there were weak negative associations between serum and erythrocyte folate and colonic DNA hypomethylation (P=0.07 and P=0.08, respectively)

    Methylenetetrahydrofolate reductase C677T polymorphism in patients with lung cancer in a Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study was designed to investigate an association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of lung cancer in a Korean population.</p> <p>Methods</p> <p>We conducted a large-scale, case-control study involving 3938 patients with newly diagnosed lung cancer and 1700 healthy controls. Genotyping was performed with peripheral blood DNA for MTHFR C677T polymorphisms. Statistical significance was estimated by logistic regression analysis.</p> <p>Results</p> <p>The MTHFR C677T frequencies of CC, CT, and TT genotypes were 34.5%, 48.5%, and 17% among lung cancer patients, and 31.8%, 50.7%, and 17.5% in the controls, respectively. The MTHFR 677CT and TT genotype showed a weak protection against lung cancer compared with the homozygous CC genotype, although the results did not reach statistical significance. The age- and gender-adjusted odds ratio (OR) of overall lung cancer was 0.90 (95% confidence interval (CI), 0.77-1.04) for MTHFR 677 CT and 0.88 (95% CI, 0.71-1.07) for MTHFR 677TT. However, after stratification analysis by histological type, the MTHFR 677CT genotype showed a significantly decreased risk for squamous cell carcinoma (age- and gender-adjusted OR, 0.78; 95% CI, 0.64-0.96). The combination of 677 TT homozygous with 677 CT heterozygous also appeared to have a protection effect on the risk of squamous cell carcinoma. We observed no significant interaction between the MTHFR C677T polymorphism and age and gender or smoking habit.</p> <p>Conclusions</p> <p>This is the first reported study focusing on the association between MTHFR C677T polymorphisms and the risk of lung cancer in a Korean population. The T allele was found to provide a weak protective association with lung squamous cell carcinoma.</p
    corecore